Tuning Timing Belt Tension

Tagged: ,

This topic contains 27 replies, has 6 voices, and was last updated by  Alexander Pruss 7 months ago.

Viewing 28 posts - 1 through 28 (of 28 total)
  • Author
    Posts
  • #49120

    atmonaut
    Participant

    So just throwing this out there to see if anyone has tried this.  I ended up tuning the tension of my timing belts by tightening them up and using a guitar tuning app on my phone to ensure they all produced the same D# note with the gantry at the same location on X and Y.   I want to get the belts as close to equal as possible, what are some ways other people get the tension balanced?

    #49121

    Ryan
    Keymaster

    Interesting, pretty good idea.

    There should not be a noticeable stretch so close is plenty good, too tight and you will lose steps, too loose and things will be undersized, super loose and you will skip teeth. I keep trying to come up with some sort of 3D printable belt tension gauge, but heck a guitar tuner should at least equalize each axis.

    #49128

    atmonaut
    Participant

    Yeah, found out my belts were not tight enough when two halves of a box with 1/32″ clearance would not fit together.  I couldn’t figure out a good way to measure the belt tension either, I was trying to draw up some kind of gauge in fusion to do it but came up with this idea and it worked nicely.  This of course assumes you want to have enough tension to make notes.  I use a bolt type belt tightener, so not sure how easy this would be using zip ties.

    #49144

    Ryan
    Keymaster

    It also assume a very similar belt length. But 1/32″ is pretty tight for wood a slight change in humidity and that is not going to work for long, I wouldn’t think. That is about what I use for similar plastic parts, dissimilar and I would use more.

    #49149

    Jeffeb3
    Participant

    The tone should change with length, so you have to make sure the distance from the gantry to the ends are consistent. And there won’t be a good comparison between machines. I guess you could use a calculator to put in a length and it would tell you a ballpark note to shoot for.

    Really though, that might just bring out the crazies (present company excluded of course).

    Wood can support very tight tolerances if you design it right. The fingers in a box joint that wrap around a box will need to be very tight. The grain is going around the same way, so as long as they are similar boards, they will shrink and expand the same, keeping a tight fit. Plus, plywood is pretty much stable (and actually expands most along it’s thickness). I can’t say for sure if you should be expecting 1/32″ (I don’t think I get that consistently on my table saw) but if you had that quality, wood can benefit from it.

    #49235

    atmonaut
    Participant

    I suppose the sound would probably be different for each machine, but I was primarily concerned with getting consistency for all 4 belts.  The belts seem to be pretty evenly tightened now, when I finish my homing switches I’ll be doing some more testing on the cut tolerances.  Here is the piece I was running with the 1/32″ gap for the two halves of the er11 collet holder box.  That first picture there is the last cut I ran when I noticed the belts were loose, you can see the poor quality of the cut if you look at the piece on the right.

    #49239

    Ryan
    Keymaster

    Before this gets too crazy, there is a proper tension for these belts. Off the top of my head 5-6lbs. Below that and you might get some smaller than expected dims, above that and nothing…as the belts should not stretch at all until you start breaking the banding inside before that happens you will stall the steppers and/or wear them prematurely from to high of a load.

    What is usually the problem is people do some crazy things with the cable ties and leave them like giant springs. The cable ties should be short and rigidly bent and lined up as show in the instructions to minimize any bounce.

    You are moving around a pretty heavy double gantry unless you turned down the accelerations for that axis I have a feeling that is a bigger contributor to each belt having a different tension. Or perhaps spindle perpendicularity to the work piece, feeds and speeds, or even bit selection. At such low tolerances everything has to be pretty perfect with such deep cuts.

    I am not trying to sound like a punk about this. I want people to understand you are chasing pretty serious tolerances and this is not usually a necessary step, and this is also a heavily modified machine. I am just making sure that this doesn’t go like last time and everyone was 100% sure zipties was there issues and everyone switched to screw mounted belts. You could also have people misunderstanding and trying to match all 4 belts no matter what shape there machines were. For the record, I have to reinstall belts all the time for various prototypes and all I have ever done is place the cable ties as I show in the assembly instructions and click them until they feel right. I can only tell if they are too loose so I start there. I also have never tried for 1/32″ in wood, so you might very well be right.

    1 user thanked author for this post.
    #49240

    atmonaut
    Participant

    Totally agree about having them be the proper tension, and not overdone.  On my first machine, I founn that the zip ties worked very well once I shortened them up and removed the ‘spring’ in them.  Currently, my belts are tight enough that I cannot feel or see any give to them if I pull on them, but the gantry still moves smoothly and easily by hand with the motors off.

    There are a LOT of variables here, and I am pretty much having to make sure I check them all, primarily due to the modifications I have made.  Personally think that your original design is best for what most people are looking to do, my machine has a cut area of only 8.5″x11.5″ and is intended for small mechanical parts made from harder materials such as acrylic and aluminum.

    #85016

    Alexander Pruss
    Participant

    Could one quantify the belt tension by counting the number of teeth in, say, a carefully measured 400 mm segment? Or are the 200 teeth in a 400 mm segment not enough precision?

    #85020

    Ryan
    Keymaster

    I would like to think that would not measurably change. If you try it out and have a way to measure that I would love to know!

    #85038

    Kelly D
    Participant

    I’ve often wondered why it couldn’t be as simple as the way you measure the tension on a motorcycle chain……”it’s right when you have XX” total deflection” up to down. But it’s also affected by the length of the belt which is different on all machines.

    https://goo.gl/images/we78Cq

    #85059

    Bill
    Participant

    What was wrong with the old motorcycle chain tension rule of thumb was the deflection was totally arbitrary, based on how much effort you put into deflecting it. IIRC Honda at one point was using a specific weight hanging from the middle of the chain span, but they stopped giving that spec when people started changing the sprocket size…
    Maybe Ryna could do a quick experiment on his machines by hanging a 1kg weight between various length MPCNC sides. 🙂

    #85064

    Ryan
    Keymaster

    It has not ever really seemed to matter too much, the “correct” tension window seems to be huge. The spec for genuine 6mm gt2 belt is like 5lbs or something, with zip ties that should actually be easy to set with a scale. I have it listed in the instructions I think.

    #85117

    Alexander Pruss
    Participant

    Assuming belt stretch follows Hooke’s Law, if a belt is suspended by two fixed points (not quite right because of the effect of the rollers, but maybe it’s a good approximation), one can calculate the stiffness coefficient k and the rest length L0 if one measures (a) the undeflected length L, and (b) the respective deflections d1 and d2 for two different weights w1 and w2 in the middle. And from these one gets the tension as k(L-L0).

    I may have made some mistake in the algebra, but if I didn’t, the formula for the tension is this big nasty mess: [deleted, as the mess was just plain wrong].

    Unfortunately, I think this formula may be really sensitive to small differences, and so it may require weight and length precisions that are really impractical to measure. I haven’t actually tried this in practice.

    #85223

    Alexander Pruss
    Participant

    My formula was wrong.  When I corrected it, and tried hanging about 50-150g weights, I got results that seemed reasonable (8.5lbs), but which were more sensitive to measurements than I would trust my measurements. For instance, changing a deflection measurement by 0.01 inches resulted in a tension estimate change of about a pound. The reason for this is that I have two unknowns: the rest length and the stiffness coefficient of the belt.

    Moreover, the belt is not very stretchy: if my calculations are right, which they may well not be, the rest length of my cable is only 0.5 mm less than its actual length.

    Audio frequency might be a better approach. There is a standard formula for the relationship between frequency, tension, density and length: http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/string.html . We can measure the density and length quite easily, so from the frequency we can get the tension. Unfortunately, the audio tuner app I’ve been trying doesn’t seem to pick up the low frequency of the belt very well. 🙁

    #85237

    Ryan
    Keymaster

    Moreover, the belt is not very stretchy:

    It should not be, it is belted.

    Audio frequency might be a better approach.

    Length?

     

    I see what you are trying to do, get some sort of exact number, but we already have one. The belts are rated at 1-5lbf tension. Anything between 2-5 has very little difference in tooth jump torque. With a window that large it is very hard to miss it. Too loose and you will have smaller than expected accuracy, too tight and you will stall your stepper.

    #85302

    Alexander Pruss
    Participant

    Audio frequency might be a better approach.

    Length?

    Not a problem. The formula I linked to takes length into account. The frequency scales inversely linearly with length.

    Here is another approximate method. Hang one small weight–say, 10-50 grams–in the middle of the belt. Using the deflection and an easy bit of statics gives us a direct calculation of the tension in the belt with the extra weight:

    tension = (1/2) * weight * sqrt((length/2)^2 + deflection^2) / deflection

    Unfortunately, this is the tension in the belt when it is stretched by the weight, rather than the tension in the belt in its original configuration. But if the weight and deflection are small, and the belt is already under some significant tension, this should be pretty close to the original tension. If we want more precision, we could take measurements with different weights and try to extrapolate to zero weight, but I expect that’s overkill.

    As I said, the error in this estimate comes from the fact that putting the weight on the belt changes the tension. And one cannot quantify how much it changes the tension on the basis of a single measurement, because the change in tension depends on two variables: the stiffness constant in Hooke’s Law and the rest length. The error in the estimate is of the same magnitude, however, as the error in the frequency method when the amplitude of vibrations in that method is of the same order of magnitude as the deflection in this method, I suspect. (The frequency formula also doesn’t take the extra tension from the extra stretch into account.)

    Yeah, one can probably just eyeball all this. But I’m a mathematician, not an engineer. 🙂

    #85304

    Jeffeb3
    Participant

    If you’re interested in knowing the tension, then you can do it.

    I think that’s probably missing the point. It doesn’t have to be perfect, or even really in a specific range. It just needs to be tight without breaking anything. There isn’t much stretch and there isn’t much force, so it really just needs to be a little past taught to be good enough and not so tight that it’s breaking.

    What I do is just pluck it. If it makes a note, then it’s tight enough. If it thuds, then it’s not tight enough. My low rider makes bass notes. My printer makes guitar notes. I’m an engineer (not a mechanical one) not a musician. 🙂

    #85321

    Ryan
    Keymaster

    I had a musician pluck my belts…sounds odd….but he heard a specific note then plucked the rest and they were all different. Can’t win em all.

    Using deflection could work if there was a calculator somewhere to type in a few variables but I doubt many can measure weight, deflection and overall length to enough accuracy to get a valid calculation? Then throw in all the various sources of belts and it is game over. I can get a km of two worth of belt and have it be two different kinds in the same batch.

    Welcome to my world, of trying to make it work easily over the entire globe with any possible combination of parts imaginable. Engineering…the science of compromises, Math….. the science of 100% certainty, Coding….the science of tabs over spaces in your language of choice.

    #85411

    Alexander Pruss
    Participant

    The tension formula can be made a slightly closer approximation and a lot simpler (by going with the horizontal component of the tension vector). It’s still a bit of an overestimate, but it’s going to be close if the weight hanging on it is small:

    tension = (1/4) * weight * length / deflection

    This seems simple enough that one doesn’t need an online calculator. The length is the length of the belt from a fixed end to the idler. The weight is the weight of the item hanging in the middle of the length (half-way between the fixed end and the idler). The deflection is the difference between the rest height and the deflected height at the mid-point where the weight is hanging. The length and deflection need it be in the same units and the tension will be in the same units as the weight (e.g., lbs or Newtons).

    But if you do want an online calculator, you can use the “Highline tension calculator” here: https://www.ropelab.com.au/two-point-anchor-calculator/ (What I call deflection, they call sag, what I call length, they call span, and what I call weight, they call load.)

    Using the deflection method, we don’t need any data specific to the particular belt.

    It’s easy to measure the length to within 1% with measuring tape or a long ruler.

    The weight can easily be measured with a small kitchen scale to within 5-10%.

    The deflection is the hardest to measure, but I expect one can do it to within 10-20% with calipers as long as the belt doesn’t get twisted under the weight.

    All this will give us a tension value within 30% or so. From what I hear in the thread, 30% should be good enough.

    There will be a small overestimate in the tension due to the tension formula being approximate because it measures the tension of the belt *with* the extra weight.

    The advantage of doing this is that it would reduce anxiety in new builders like me who are not sure if the tension is in the right range and close enough between the four belts.

    You can also go backwards. You decide what tension you need, and then you adjust until you have the right deflection using the formula:

    deflection = (1/4) * weight * length / tension

    (I am not promising I didn’t make some mistake. It’s been three decades since first year physics, and I’ve made mistakes in this before.)

    #85426

    Alexander Pruss
    Participant

    I just measured (approximately) what tensions I had got when I originally tried to follow the official assembly instructions without measuring tension, and they ranged from 1.9 lbs to 3.1 lbs. So at least some of them were outside the recommended range of 3-10 lbs, and they varied among each other by 50%.

    More experienced builders can probably just tell what is a good tension, but newbies like me can’t.

    Using the deflection formula, I think I now managed to adjust them all to within about 20% of 6 lbs (taking into account that I have a rectangular build, so the sides aren’t all the same).

    Here is a picture of how I was measuring the deflection.

    deflection

    Attachments:
    #85449

    Ryan
    Keymaster

    outside the recommended range of 3-10 lbs

    Using the deflection formula, I think I now managed to adjust them all to within about 20% of 6 lbs

    Too high. Two post above I listed the specs as 1-5lbf so you initial belt settings were absolutely perfectly fine. There should be zero functional difference between those numbers so if all the belts are different but in that range you are fine. What problem do you think the belts are causing you?

    #85455

    Alexander Pruss
    Participant
    Too high. Two post above I listed the specs as 1-5lbf so you initial belt settings were absolutely perfectly fine. There should be zero functional difference between those numbers so if all the belts are different but in that range you are fine. What problem do you think the belts are causing you?

    But the official assembly page ( https://www.v1engineering.com/belts/ ) says “the GT2 belts we use are 6mm wide, and should be installed at between 3-10 lbs of tension”.

    #85460

    Ryan
    Keymaster

    Done, changed it.

    1 user thanked author for this post.
    #85461

    Ryan
    Keymaster

    What problem do you think the belts are causing you?

    #85468

    Alexander Pruss
    Participant

    Thanks for fixing the instructions. There is one other place on the page where it seems to still say “The GT2 belts … should be installed at between 3-10 lbs of tension (they can handle much more)”.

    The problem I thought I was having was that diagonal movement seemed a bit jerky (remember that I had only about 2lbs on one or two of the belts). And since I had less tension than the official instructions page, I assumed that was related.

    It seems smoother now at 6lbs. Do you think I should remove the zip ties and go back down to, say, 4lbs?  I am really new to this.

    #85543

    Ryan
    Keymaster

    I would honestly say just start using it and after some plotting and cutting we can revisit any issue that might pop up. There are many other things to learn along the way. Have some fun with it for a while.

    #85856

    Alexander Pruss
    Participant

    I now wonder if the real limit here isn’t the radial load capacity of the motors. I have 17HS19-2004S1 motors from Amazon (your link is to 17HS19-2004S: I don’t know if these are the same or not) and I asked OMC-StepperOnline what the radial load capacity is. They told me it’s 21N. Given how the belt is arranged, the radial load on the motors is about two times the tension, right? That would suggest a maximum only around 2.3lbf of belt tension!

    Am I missing something? I am now a bit afraid of damaging my motors. Though they seem to run just fine (I’ve only been drawing so far).

Viewing 28 posts - 1 through 28 (of 28 total)

You must be logged in to reply to this topic.